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EVALUATION OF THE SWAT MODEL’S SEDIMENT

AND NUTRIENT COMPONENTS IN THE PIEDMONT

PHYSIOGRAPHIC REGION OF MARYLAND

T. W. Chu,  A. Shirmohammadi,  H. Montas,  A. Sadeghi

ABSTRACT. Mathematical watershed−scale models are among the best tools available for analyzing water resources (quantity
and quality) issues in spatially diverse watersheds since continuous water quality monitoring is expensive and spatially im-
practical in mixed land use watersheds. However, models without appropriate validation may lead to misconceptions and
erroneous predictions. This study used six years of hydrologic and water quality data to calibrate and validate the capability
of SWAT (Soil and Water Assessment Tool) model in assessing nonpoint source pollution for a 346 ha watershed in the Pied-
mont physiographic region. The evaluation of the hydrology component of SWAT completed in a previous study pointed out
that SWAT has no mechanism to account for subsurface flow contributions from outside the watershed. For this evaluation,
all nutrient loadings leaving the watershed were adjusted to subtract the chemical transport via subsurface flow contributions
from outside the watershed. Evaluation results indicated a strong agreement between yearly measured and simulated data
for sediment, nitrate, and soluble phosphorus loadings. However, simulations of monthly sediment and nutrient loadings were
poor. Overall, it was concluded that SWAT is a reasonable watershed−scale model for long−term simulation of different man-
agement scenarios. However, its use on storm−by−storm or even on monthly basis may not be appropriate for watersheds with
similar physiography and size. Additionally, ignoring the subsurface contribution of water and chemicals from outside the
watershed into the watershed aquifer could cause significant errors in model prediction.
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onpoint source (NPS) pollution of streams, lakes,
and estuaries has created a critical concern
throughout the world. Agricultural activities have
been identified as the primary sources of NPS pol-

lutants (sediments, nutrients, pesticides). Although there are
many potential contributors of nonpoint source pollution, in-
cluding golf courses, urban development, and stream bank
erosion, agriculture is the leading contributor of sediment
and nutrients to streams and rivers in the U.S. (USEPA,
1998). Sediments in water bodies not only damage the recre-
ational and aesthetic values of the water but also contribute
major pollutants to surface water. Pollutants such as chemi-
cals and pathogens may be transported both in solution and
attached to sediments. According to the USDA−SCS (1989),
soil erosion is the source of 99% of the total suspended solid
loads in waterways in the U.S. Gianessi et al. (1981) reported
that agricultural croplands and rangelands produce 62% of
total annual suspended solids. Agriculture also accounts for
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66% and 65% of the total national phosphorus and nitrogen
discharges, respectively.

Agrochemicals and animal manures are extensively used
in the U.S. to increase crop production, but their improper use
may cause serious water quality problems in both surface and
groundwater resources. For example, the application of
nitrogen fertilizer to intensively cropped areas, and other
crop management practices, provide a considerable source of
nitrate that may move to stream flow through subsurface flow
or leach deeper into the soil profile and reach the groundwater
system in areas with vulnerable soils and hydrogeology. For
the Chesapeake Bay, one of the world’s largest estuaries,
nonpoint sources of pollutants contribute approximately 67%
of the nitrogen and 39% of the phosphorus that reach the bay
(Angle et al., 1986). Estimates of nutrient inputs to the bay
from the Maryland portion of its watershed attribute over
40% of the total phosphorus inputs to agricultural activities
(Chesapeake Bay Program, 1988).

Continuous water quality monitoring is very expensive,
time consuming, and spatially impractical at the watershed
level. Therefore, mathematical modeling has become a
primary technology for analyzing NPS pollution and its
spatial distribution. Watershed−scale models that can be used
to predict the effects that changes in agricultural activity have
on runoff, soil erosion, and nutrient transport are essential to
analyze nonpoint source pollution in agricultural watersheds.
The use of watershed−scale models has also been proposed
to aid in the development of total maximum daily load
(TMDL). Since measured data are often insufficient to
thoroughly depict pollution levels within a watershed,
models would be used to assess the pollutant loadings
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allowed to be discharged into the receiving waterbody and in
allocating pollutant loads between point and nonpoint
sources.

Without proper validation, watershed−scale models may
lead to erroneous predictions. However, model validation is
often a difficult proposition because of the lack of long−term
watershed monitoring data. This study continues the effort
for evaluating the SWAT (Soil and Water Assessment Tool)
model with measured data, initiated by Chu and Shirmoham-
madi (2004) where the hydrology component was validated.
Six years of hydrologic and nutrient loading data were used
to evaluate the sediment and nutrient components of SWAT
over a 346 ha watershed in the Piedmont physiographic
region of Maryland.

In general, applications of SWAT for assessing NPS
pollution have shown reasonable results. Bingner et al. (1997)
evaluated the effect of watershed subdivision on SWAT
simulation of runoff and fine sediment yield. They reported that
annual fine sediment yield produced from uplands was very
sensitive to the level of watershed subdivision, while annual
runoff was not sensitive. The results also indicated that SWAT
underestimated the total annual fine sediment yield produced
from all sediment sources within the Goodwin Creek watershed
in northern Mississippi.

Srinivasan et al. (1998) reported the application of SWAT
to Richland and Chambers Creeks watershed in the upper
Trinity River basin in Texas. Their findings revealed a
relatively wide range for Nash−Sutcliffe coefficient (R2)
values (0.52 to 0.84), when comparing the simulation results
to the observed monthly stream flow during both calibration
and validation phases of the model assessment. In addition,
SWAT estimated the accumulated sediment loadings over
3 to 7 year periods within 2% and 9% of the measured data
during both calibration and validation phases of the model,
respectively. Kirsch (2000) and Kirsch et al. (2002) used
SWAT to predict flow, sediment, and phosphorus loads for the
Rock River basin in southern Wisconsin. Two subareas
(Jackson Creek and Yahara River) were selected for verifying
SWAT’s capability before applying it to entire basin. The
results revealed R2 values of annual flow, sediment, and
phosphorus to be 0.41, −1.64, −1.37 for Jackson Creek and
0.61, 0.75, 0.07 for Yahara River, respectively. Kirsch also
indicated that SWAT was less accurate during years with high
runoff.

Saleh et al. (2000) applied SWAT to assess the effect of
dairy production on water quality within the upper North
Bosque River watershed of north central Texas. Model
outputs were compared to flow, sediment, and nutrient
measurements for 11 stream sites within the watershed for the
period of October 1993 to July 1995. Daily flow, sediment,
and nutrient loading from the dairy waste application fields
were simulated in the APEX (Agricultural Policy/Environ-
mental eXtender) model (Williams et al., 1998) and then
input into SWAT as direct point sources. The results indicated
that SWAT was able to predict the average monthly flow,
sediment, and nutrient loadings (organic N, NO3−N, organic
P, PO4−P) at 11 stream sites reasonably well, with R2 values
ranging from 0.65 to 0.99. Average monthly flow and
loadings for the entire watershed were also adequately
simulated, with R2 values ranging from 0.54 to 0.94, except
for NO3−N with an R2 value of 0.27. Saleh et al. (2000)
reported that the predicted organic N, organic P, and PO4−P
were generally close to or slightly lower than the measured

values, while NO3−N was overpredicted by SWAT at all sites
on a monthly basis.

Santhi et al. (2002) applied SWAT to demonstrate the
advantage of a model in a TMDL development process for
estimating phosphorus loadings under existing and projected
conditions of the watershed. They also analyzed the effec-
tiveness of various phosphorus control BMPs in the Bosque
River watershed in Texas. Measured flow, sediment, organic
nitrogen, mineral nitrogen, and phosphorus on a monthly
basis from 1993 through 1998 were used in model calibra-
tion. Results indicated that simulated monthly flow, sedi-
ment, and nutrient loadings were close to the observed values
during the calibration period (Santhi et al., 2001). The
calibrated model was then applied to quantify the effects of
BMPs related to dairy manure management and municipal
wastewater treatment plant effluent. The results revealed that
dairy management measures had greater benefit in reducing
loadings (mass) of soluble P than soluble P concentrations.
However, wastewater treatment plant (WWTP) scenarios
showed greater benefit in reducing soluble P concentrations
than total P loadings.

MATERIALS AND METHODS
DESCRIPTION OF STUDY SITE

The selected 346 ha Warner Creek watershed, located in
the Piedmont physiographic region of Maryland (39° 35′ 3″
latitude, 77° 14′ 31.5″ longitude at the outlet of watershed),
is part of the NPS−319 project in the Monocacy River
watershed. The watershed drains into Little Pipe Creek and
then into the Monocacy River. These water bodies are part of
the Chesapeake Bay watershed. According to a USDA report
(USDA−SCS, 1990), the Monocacy River has been ranked as
number 3 among 30 priority river basins regarding the
potential release of phosphorus to Chesapeake Bay, and as
number 20 regarding the potential release of nitrogen. This
watershed was selected for study considering land use
characteristics,  hydrologic characteristics and stream condi-
tions, BMP implementation plans, and cooperative charac-
teristics of the farmers (Shirmohammadi et al., 1997). A
series of monitoring stations was established along Warner
Creek to collect hydrologic parameters and water quality
samples. The location of the watershed and the distribution
of monitoring stations are shown in figure 1. However, only
data collected at station 2A (outlet of the watershed) were
used in this study.

In the Warner Creek watershed, the two dominant soil
types are Manor−Edgemont−Brandywine soils and Penn−
Readington−Croton soils. The Penn soils are drained some-
what excessively, the Readington soils are drained
moderately well, and the Croton Soils are drained poorly.
Approximately 65% of the land surface has been classified as
moderately erodible, while 12% has been classified as
severely erodible (USDA−SCS, 1960). In general, most of
the upland agricultural soils belong to the Penn silt loam
series with an average slope of 3% to 8%. Land use in the
watershed includes a mixture of dairy, beef, pasture, and
cropland. There are three major dairy operations, totaling to
about 620 heads of milking cows. A more intense portion of
the dairy operation is located in the upper portion of the
watershed (subwatershed 1B) involving 270 heads of dairy
cows in 80 ha.
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Figure 1. Location and monitoring set up for Warner Creek watershed, Frederick County, Maryland.

DATA ACQUISITION
Watershed information such as soils, topography, and land

use were recorded by the ERDAS IMAGINE geographic
information system (Searing and Shirmohammadi, 1994).
Using SPOT satellite images, USGS 7′ quad−sheets, and the
Global Positioning System (GPS), the entire watershed
topography and boundary data were electronically recorded
in the ERDAS IMAGINE GIS system. The soil database was
extracted from the USDA Soil Conservation Service’s state
soils map. Land use data has been collected on each tract of
land and stored in the GIS system for every field identified
by aerial photos obtained from the USDA−ASCS office.

Station 2A was gauged and equipped with a continuous
recording automatic ISCO flowmeter and sampler. Rainfall
data were measured using a continuous recording rain gauge
near station 2A, and these data were supplemented by daily
readings of a manual rain gauge at the same station. The
sampling scheme applied to all stations (1A, 1B, 1C, and 2A)
involved grab sampling on weekly intervals from February
through June and biweekly for the rest of the year. The
automated system measured and sampled the storm events
that occurred between the regular grab sampling times at the
outlet of the watershed (station 2A). This selected frequency
provided a reasonable trend in hydrologic and water quality
response of the watershed and satisfied the EPA’s national
monitoring guidelines (USEPA, 1991). Water samples were
analyzed for sediment, ammonia nitrogen, nitrite nitrogen,
nitrate nitrogen, total Kjeldahl nitrogen (TKN), total phos-
phorus, and ortho−phosphate. An automated ion analyzer
(Lachat model 1000−1) was used to analyze the nutrient
samples. The Quickchem methods (reaction modules) used
with the automated ion analyzer for the constituents of
interest are EPA approved. Crop management, farm fertiliza-
tion habits, and manure applications were recorded by the
Monocacy Watershed Project Office (Burdette, 1996).

MODEL BACKGROUND
Arnold et al. (1993) developed the SWAT model to assist

water resource managers in assessing the impact of manage-
ment on water supplies and nonpoint source pollution in
watersheds and large river basins on a long−term basis.
SWAT is a modified version of the SWRRB (Simulator for

Water Resources in Rural Basins) model (Arnold et al.,
1990). The major changes to SWRRB include: (1) expanding
the ability of computation on hundreds or thousands of grid
cells or subwatersheds, (2) adding lateral subsurface flow and
groundwater flow components, and (3) modifying the routing
structure, irrigation and water transfer through ponds,
reservoirs, and channel reaches.

SWAT is a complex, physically based model with a
spatially explicit parameterization capability. A complete
description of SWAT’s components is found in Arnold et al.
(1998). In brief, SWAT is a continuous simulation model and
operates on a daily time step to perform simulations up to
100 years using measured and/or stochastically generated
weather data. The major components of SWAT model include
hydrology, weather, sedimentation, soil temperature, crop
growth, nutrients, pesticides, agricultural management,
channel routing, and reservoir routing. Detailed description
of each component is provided in Arnold et al. (1998). For the
purposes of this study, a brief background on the sediment
and nutrient components are provided below.

SWAT Sediment
The SWAT model estimates soil erosion and sediment

yield from the landscape and in−stream depositional and
degrading processes. The sediment yield from the landscape
is calculated by the Modified Universal Soil Loss Equation
(MUSLE) (Williams, 1975). Sediment deposition and degra-
dation in the stream channel are both calculated during the
sediment routing. The maximum amount of sediment that
can be transported from a reach segment during channel
sediment routing is determined by the modified Bagnold’s
equation (Bagnold, 1977):

SPEXP
cmxch,sed, VSPCONCONC ×=  (1)

where CONCsed,ch,mx is the maximum concentration of sedi-
ment that can be transported (ton/m3 or kg/L), SPCON is the
coefficient in this equation defined by the user, Vc is the peak
flow velocity (m/s) in the channel, and SPEXP is an exponent
parameter in the equation. The coefficient (SPCON) should
be between 0.0001 and 0.01. The exponent (SPEXP) normal-
ly ranges from 1.0 to 2.0.
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SWAT Nutrients
Nitrogen and phosphorus processes in the SWAT model

are handled in a similar manner as in the Erosion Productivity
Impact Calculator (EPIC) model (Williams, 1990, 1995).
The amount of nitrate nitrogen in runoff is only considered
in the top soil layer (10 mm thickness). Nitrate−N loading is
estimated as the product of the volume of runoff and nitrate
concentration in the first layer. Amounts of NO3−N contained
in lateral subsurface flow and percolation are estimated as
products of the water volume and the average concentration
of nitrate in each layer. Organic N transport with sediment is
calculated with a loading function developed by McElroy et
al. (1976) and modified by Williams and Hann (1978). The
loading function estimates the daily organic N runoff loss
based on the concentration of organic N in the top soil layer,
the sediment yield, and the enrichment ratio. The enrichment
ratio is the ratio of the mass of organic nitrogen in the
sediment to that in the soil. In addition, the plant uptake of
nitrogen is estimated using a supply−and−demand approach.

Because phosphorus is not very soluble, phosphorus loss
in surface runoff is calculated based on the similar concept of
partitioning pesticides into the solution and sediment phases,
as described by Leonard and Wauchope (1980). The amount
of soluble phosphorus removed in runoff is predicted using
the labile P concentration in the top 10 mm of the soil, the
runoff volume, and a partitioning factor. Sediment transport
of P (particulate P) is simulated by a loading function, as
described in organic N transport. Phosphorus used by the crop
is also estimated with the supply−and−demand approach.

SWAT adopted a modified version of the QUAL2E model
(Brown and Barnwell, 1987) to simulate in−stream nutrient
transformations.  QUAL2E is intended for use as a water
quality planning tool, which can be operated as a steady−state
or as a dynamic model. The sub−components of QUAL2E
include models of the biochemical dynamics of algae as
chlorophyll−a, dissolved oxygen, carbonaceous oxygen
demand, organic nitrogen, ammonium nitrogen, nitrite
nitrogen, nitrate nitrogen, organic phosphorus, and soluble
phosphorus.

MODEL EVALUATION METHODS

Statistical Methods
Graphical methods (time series plot and scattergram) and

statistical measures were used to evaluate the model
performance based on the measured data. Four statistical
criteria were used to evaluate the hydrologic goodness of fit:
the correlation coefficient (r), the coefficient of determina-
tion (r2), the Nash−Sutcliffe coefficient (R2) (Nash and
Sutcliffe, 1970), and the root mean square deviation (RMS).
The correlation coefficient (r) is an index of the degree of
linear association between the observed and simulated
values, with zero indicating no linear relationship and
extreme values (1.0 and −1.0) indicating positive and
negative relationships, respectively. Its square (r2) represents
the percentage of variance in the measured data that is
explained by the simulated data. If the r2 value is equal to
zero, there is no incentive to use two regression parameters
to summarize the data. The Nash−Sutcliffe coefficient (R2),
also called the coefficient of efficiency, indicates how well
the plot of observed versus simulated data is close to the 1:1
(equal value) line. The Nash−Sutcliffe coefficient is similar
to the coefficient of determination. However, R2 compares

the observed values to the 1:1 line of measured versus
predicted data instead of the linear regression line of best−fit.
The R2 value is calculated as:
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where Oi and Pi are the observed and predicted values, re-
spectively, O  is the mean of the observed values, and n is the
number of samples. The R2 value can range from −∞  to 1,
with 1 indicating a perfect fit and negative values being typi-
cal of significant errors in mean predictions.

Another goodness−of−fit criterion is root mean square
deviation (RMS). It is equal to the square root of the variance.
The smaller the RMS, the better the performance of the
model, and a value of 0.0 for RMS represents perfect
simulation of observed volume. The RMS value is given by:

( )
n

PO
n

i
ii∑

=
−

= 1

2

RMS  (3)

where the parameters Oi, Pi, and n are defined as before.

Sensitivity Analysis
Sensitivity analysis is a technique for assessing the

comparative change in model response resulting from a
change in model inputs. It helps to identify the parameters
that affect the model’s output significantly. Identification of
sensitive input parameters may help the modeler to adjust
those parameters during model calibration. Only limited
information on the sensitivity analysis of the SWAT model’s
input parameters has been reported. Spruill et al. (2000)
indicated that the most sensitive parameters of the SWAT
model for application in a central Kentucky watershed were
saturated hydraulic conductivity, alpha base flow factor,
drainage area, channel length, and channel width. Vanden-
berghe et al. (2001) applied the Latin Hypercube Sampling
technique to investigate the parameter sensitivity for the
in−stream water quality model (QUAL2E model) imple-
mented in SWAT. The results showed that parameters related
to the growth and the die−off of algae, BOD decay constant,
and the benthic oxygen demand had significant effects on
model predictions. The parameters selected from the SWAT
model for sensitivity analysis in this study are based on
literature references, personal judgments, and suggestions in
SWAT’s user manual. The selected parameters are summa-
rized in table 1.

Sensitivity analysis provides a guide to decide which input
parameters will have the significant impact on model
prediction. There are a variety of ways to implement the
sensitivity analysis. An expression of sensitivity called
“condition number” (Chapra, 1997) is used in this study.
Consider c as a function of each of the model parameters and
forcing functions: that is, c = f(k1, k2, k3, ...). The condition
number can be expressed as:

k
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c

k
CNk ∂
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Table 1. The selected model parameters in the sensitivity analysis.
Input

Parameter Definition

Nitrogen
BIOMIX Biological mixing efficiency
NPERCO Nitrogen percolation coefficient

AI1 Fraction of algal biomass that is nitrogen (mg N/mg
algae)

K_N Michaelis−Menton half−saturation constant for nitro-
gen (mg N/L)

P_N Algal preference factor for ammonia
ORGANICN Initial organic nitrogen concentration in the reach

(mg organic N−N/L)
RS4 Rate coefficient for organic N settling in the reach

(day−1)
BC2 Rate constant for biological oxidation of NO2 to

NO3 in the reach (day−1)

Phosphorus
BIOMIX Biological mixing efficiency
PPERCO Phosphorus percolation coefficient
PHOSKD Phosphorus soil partitioning coefficient

UBP Phosphorus uptake distribution parameter
AI2 Fraction of algal biomass that is phosphorus (mg

P/mg algae)
K_P Michaelis−Menton half−saturation constant for phos-

phorus (mg P/L)
RS2 Benthic (sediment) source rate for dissolved phos-

phorus in the reach (mg dissolved P/(m2 day)
RS5 Organic phosphorus settling rate in the reach (day−1)
BC4 Rate constant for mineralization of organic P to dis-

solved P in the reach (day−1)
DISOLVP Initial dissolved phosphorus concentration in the

reach (mg soluble P−P/L)

where CNk is defined as the condition number for the parame-
ter k. If the derivative form is difficult to obtain, a discrete
form is used for the derivative:
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The condition number provides a transfer function to
propagate the relative error of the parameter into the relative
error of the prediction. The bigger the condition number, the
more sensitive the parameter is for the specific model
prediction. A negative condition number indicates that the
parameter has an opposite effect on prediction.

Previous Validation of Hydrology Component
The evaluation of the hydrology component of SWAT

completed in the previous study (Chu and Shirmohammadi,
2004) pointed out subsurface flow contributions from outside
the watershed. A simple water budget analysis was con-
ducted to quantify the possible subsurface flow contribution
from outside the watershed. A simple balance equation that
contains basic elements of the water budget was used:

Pre + GI = SR + B + ET ± �Ss ± �Sg (7)

where Pre is precipitation (mm), GI is groundwater inflow in-
cluding seepage losses (mm), SR is surface runoff (mm), B is
base flow (mm), ET is evapotranspiration (mm), �Ss is

change in soil moisture (mm), and �Sg is change in ground-
water storage (mm).

The major component of the incoming water is from
precipitation (Pre). The groundwater inflow (GI) to the
watershed was initially assumed to be zero. The outgoing
water components are the surface runoff (SR), base flow (B),
and evapotranspiration (ET). Precipitation was measured
with a rain gauge within the watershed. Surface runoff and
base flow were separated from streamflow, which was
measured at the outlet of the watershed (station 2A). The
actual evapotranspiration was estimated by the SWAT model
due to the lack of observed data. The change in soil moisture
(�Ss) was assumed to be zero on a long−term basis. The
change in groundwater storage (�Sg) was estimated from the
gravity yield (Yg) of the watershed (Arnold and Allen, 1996)
and the change in groundwater stage (�H). Change in
groundwater stage was obtained from a water−level observa-
tion well located at 0.8 km west of Mount Airy (18 km from
the upper boundary of watershed) in Frederick County,
Maryland. The change in groundwater storage is:

 �Sg = �H ×Yg (8)

where Yg is described by equation 9 as:

H

ETBSRPre
Yg ∆

−−−=  (9)

where all the parameters are defined before. The gravity yield
value was taken from the Maryland Geological Survey re-
ported for several of the Frederick County basins in Maryland
(Duigon and Dine, 1987). Since there is no survey within the
Warner Creek watershed, the average gravity yield value of
similar regions (Yg = 0.063) was used. The remaining compo-
nent of the outgoing water is seepage loss to the deep aquifer
or subsurface flow recharge from outside of the watershed.
Because the groundwater inflow was assumed to be zero ini-
tially, the seepage loss could be considered as subsurface
flow contribution from outside the watershed if its value is
negative. The resulting values of seepage loss were found to
be negative for each year in this study, thus indicating subsur-
face flow contributions from outside the watershed. Mea-
sured base flow was therefore corrected for the extra
subsurface flow contribution from outside the watershed us-
ing the water balance adjustment. The corrected datasets
from the water balance adjustment were used to obtain an ob-
jective evaluation of the SWAT model’s performance. De-
tailed discussion can be found in Chu and Shirmohammadi
(2004).

Approach for Model Calibration and Validation
The entire Warner Creek watershed was subdivided into

40 subwatersheds based on similarity of land use to allow
consideration of significant spatial detail. The land use type
and topography of each subwatershed were both extracted
from the GIS database (Searing and Shirmohammadi, 1994).
Soil parameters for the corresponding soil series extracted
from the GIS system were obtained from the Soils−5 database
contained in SWAT (Arnold et al., 1996). Site−measured
daily rainfall data were used for entire watershed simulation,
while missing data were filled using data from the Emmits-
burg, Maryland weather station, located 11.5 km from the
watershed. Measured daily maximum and minimum temper-
atures were also obtained from the Emmitsburg station and
applied to the entire watershed. For divided subwatersheds
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Table 2. Condition numbers of selected parameters in the nitrogen component of the SWAT model.
Condition Number by Model Prediction

Parameter
Organic

N
NO3−N in

Surface Water
NO3−N in Lateral
Subsurface Flow

Plant
Uptake N

NO3−N Leached from
the Soil Profile

Fresh Organic
to Mineral N

BIOMIX −0.165 −0.069 −0.014 −0.001 −0.024 −0.006
NPERCO −0.003 0.966 0.056 0 −0.029 0

containing no channel reach, a wide and short imaginary
channel was created (10 × 5 m) to aggregate surface runoff
for channel routing. Monthly streamflows measured at the
watershed outlet (station 2A) for the period of April 1994
through December 1999, which was separated into storm
flow and base flow, were used for flow calibration and valida-
tion of the model simulations. In addition, average pollutant
concentrations measured at the watershed outlet (station 2A),
were used to calculate the pollutant loadings leaving the wa-
tershed. Flow data for 1998 were incomplete due to equip-
ment malfunction; thus, a neural network approach (ASCE,
2000a, 2000b) was used to generate the flow data for this year
using flow and rainfall data for the period of 1994 through
1997 and 1999.

The measured sediment loading for the entire watershed
was estimated as the product of the measured flow volume
and the sediment concentration at station 2A. Monthly
measured sediment loadings from 1994 to 1995 were used for
model calibration, while data from 1996 to 1997 were used
for model validation. Visual inspection of time series plots
and four statistical measures (r, r2, R2, and RMS) were used
to evaluate the model’s performance in sediment yield
prediction during both calibration and validation periods.

Nutrients of interest in the SWAT model’s prediction are
nitrate nitrogen (NO3−N), ammonia nitrogen (NH4−N), total
Kjeldahl nitrogen (TKN), soluble phosphorus (PO4−P), and
total phosphorus (TP). Because of the presence of subsurface
flow contribution from outside the watershed boundary (Chu
and Shirmohammadi, 2004), all nutrient loadings leaving the
watershed were adjusted to subtract the chemical transport
via subsurface flow contribution from outside the watershed.
This process permits a fair evaluation of the nutrient
component of the SWAT model, especially for small
watersheds such as the one in this study. The total nutrient
loading is the summation of loading from both surface runoff
and base flow. The base flow loading was therefore modified
by equation 10:

i

i

B

B′
×=′ NLOADDNLOA  (10)

where NLOAD is the monthly nutrient loading (kg/ha),
DNLOA ′  is the monthly nutrient loading after adjustment

(kg/ha), Bi is the monthly measured base flow (mm), and iB′
is the monthly base flow after subtracting the contribution
from outside of the watershed (mm).

Measured monthly nitrate loadings from April 1994
through December 1995 were used for nitrate calibration,
while the remaining data (1996 through 1999) were used for
nitrate validation. Once the nitrate calibration was complete,
the measured monthly data from April 1994 through
December 1999 were used for ammonia and TKN validation.
For TKN validation, the summation of simulated ammonia
and organic nitrogen was compared to measured TKN data.

The simulated soluble phosphorus was compared to
measured ortho−phosphate, while the summation of simu-
lated soluble and organic phosphorus was compared to
measured total phosphorus loading. Measured monthly
ortho−phosphate loadings from April 1994 through Decem-
ber 1996 were used for soluble phosphorus calibration. The
remaining data (1997 through 1999) were used for model
validation.  After soluble phosphorus calibration was done,
the measured data for the entire period (April 1994 through
December 1999) were used for total phosphorus validation.

RESULTS AND DISCUSSION
SENSITIVITY ANALYSIS

Table 2 shows the condition number of selected parame-
ters for SWAT’s nitrogen simulation. Predictions of nitrate in
surface runoff are very sensitive to the NPERCO parameter
(nitrogen percolation coefficient), while nitrate in lateral
subsurface flow is only moderately sensitive to this parame-
ter. Organic nitrogen production is moderately sensitive to
the BIOMIX parameter (biological mixing efficiency), and
this parameter slightly affects nitrate in surface runoff and
lateral subsurface flow. It is notable that increases in
BIOMIX have a negative effect on the six model predictions
from their negative condition numbers. Parameters AI1,
K_N, and P_N in the general water quality input file (.wwq
file) and parameters ORGANICN, RS4, and BC2 in the
stream water quality input file (.swq file) had no effect on the
nitrogen simulations. Those parameters are related to the
nitrogen transformation and transport in stream. Their
associated condition numbers for the six nitrogen related
predictions are all zero.

The condition numbers of selected parameters in the
phosphorus submodel are presented in table 3. Soluble
phosphorus in surface runoff is more sensitive to BIOMIX
than organic phosphorus bound to sediment, considering the
condition numbers of −0.233 and −0.035, respectively.
PPERCO (phosphorus percolation coefficient) has a moder−

Table 3. Condition numbers of selected parameters in the phosphorus component of the SWAT model.
Condition Number by Model Prediction

Parameter
Organic P

with Sediment
Soluble P in

Surface Runoff
Plant

Uptake P
Active to
Labile P

Active to
Stable P

Stable Organic to
Active Organic P

Fresh Organic
to Mineral P

BIOMIX −0.035 −0.233 0 0.008 0.007 0.168 −0.005
PPERCO 0.003 0.235 0 −0.008 −0.008 −0.003 0
PHOSKD 0.0004 −0.975 0 0.035 0.035 0 0

UBP −0.008 −0.165 0 −0.009 −0.023 0.001 0
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Table 4. Default and final calibrated values
of parameters used in nutrient calibration.

Nutrient Parameter Range
Model Default

Value
Calibrated

Value

Nitrogen BIOMIX 0.0−1.0 0.20 0.21
NPERCO 0.0−1.0 0.20 0.22

Phosphorus BIOMIX 0.0−1.0 0.20 0.21
PPERCO 10.0−17.5 10.0 10.0
PHOSKD 100.0−200.0 175.0 200.0

UBP 0.0−100.0 20.0 18.0

ate effect on soluble P in surface runoff (CN = 0.235) but little
influence on organic P (CN = 0.003). Soluble P in surface run-
off was highly sensitive to PHOSKD (phosphorus soil parti-
tioning coefficient), with a CN of −0.975. However,
PHOSKD has nearly no effect on organic P, with a CN of
0.0004. The UBP (phosphorus uptake distribution) parame-
ter shows only moderate effect on soluble P, with a CN of
−0.165 and low sensitivity to organic P with a CN of −0.008.
It was also found that phosphorus predictions are not sensi-
tive at all to parameters AI2 and K_P in the .wwq file and
RS2, RS5, BC4, and DISOLVP in the .swq file, thus register-
ing zero condition numbers. Similar results on the lack of ef-
fects of the latter parameters in SWAT were reported by
Houser and Hauck (2002). These authors’ results, the present
results, and the QUAL2E results of Vandenberghe et al.
(2001) discussed earlier suggest a possible mis−implementa-
tion of QUAL2E equations in the SWAT model. Alternative-
ly, the scale of the present watershed may simply be too small
for in−stream processes to be significant in comparison with
overland and subsurface processes.

MODEL CALIBRATION

Parameters that affect the sediment yield and transport
were calibrated until the simulated monthly sediment yield
closely matched the observed data. The control practice
factor (PE) in MUSLE was estimated based on the various
subwatershed conditions, and its values ranged from 0.37 to
0.6. The soil erodibility factor (K) was adjusted to 0.28, 0.32,
0.37, 0.24, and 0.37 for the Penn, Manor, Croton, Linganore,
and Readington soils, respectively. The crop management
factor (C) was calculated by the model for all days when
runoff occurred. Six input parameters were calibrated for the
sediment routing process. CH_EROD (channel erodibility
factor) and CH_COV (channel cover factor) were set from 0
to 0.32 and 0 to 0.3, respectively, according to the channel

condition in each subwatershed. The peak rate adjustment
factor (APM) for sediment routing in each subwatershed was
set to 1.5 to adjust the effect of peak flow rate on sediment
routing, while the peak rate adjustment factor (PRF) for
sediment routing in the channel was set to 1.3. In addition, the
resultant values of the SPCON and SPEXP factors (defined
in eq. 1) after calibration were 0.0012 and 1.0, respectively.

For calibration of the nitrogen component, two parame-
ters, nitrogen percolation coefficient (NPERCO) and biolog-
ical mixing efficiency (BIOMIX), were adjusted to give a
best match with the measured nitrate loadings. After nitrate
calibration, no calibration was performed for ammonia and
organic nitrogen since the two parameters were fixed. The
nitrogen percolation coefficient controls the amount of
NO3−N removed from the surface layer in runoff relative to
the amount removed via percolation. The final values of
calibrated parameters are listed in table 4. Nitrogen trans-
formation related parameters in the .wwq file (AI1, K_N, and
P_N) and the .swq file (ORGANICN, RS4, and BC2) were
found to have no effect on simulation according to the
previous sensitivity analysis.

The phosphorus percolation coefficient (PPERCO), the
phosphorus soil partitioning coefficient (PHOSKD), and the
phosphorus uptake distribution parameter (UBP) were ad-
justed for soluble phosphorus calibration according to the
sensitivity analysis results (table 3). The phosphorus percola-
tion coefficient, similar to NPERCO, defines the ratio of the
amount of soluble P removed from the surface layer in runoff
relative to the amount of soluble P removed via percolation.
The phosphorus soil partitioning coefficient is the ratio of
phosphorus attached to sediment to phosphorus dissolved in
soil water. The final values of those calibrated parameters are
included in table 4. Similar to the nitrogen component, the
phosphorus transformation related parameters in the .wwq
file (AI2 and K_P) and the .swq file (DISOLVP, RS2, RS5,
and BC4) had no effect on model prediction.

HYDROLOGY

Figure 2 shows the time series plot of measured and
simulated total streamflow during the calibration period. The
corrected measured total streamflow at the outlet of the wa-
tershed (station 2A) was obtained by adding the surface run-
off to the adjusted base flow for each event. Measured base
flow was corrected for the extra subsurface flow contribution
from the water balance adjustment. The model’s simulation
matches fairly well with measured data except in winter and
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Figure 2. Time series plot of measured and simulated monthly streamflow (mm) data after adjustment during the calibration period (April, 1994−1995).
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Table 5. Linear regression comparison and Nash−Sutcliffe coefficient
for measured flow before and after adjustment versus simulated

flow during calibration and validation periods.
Hydrologic

Measurements Intercept Slope r2
R2 (Nash−
Sutcliffe)

Calibration period (April, 1994−1995)
    Base flow before adjustment 5.62 0.35 0.56 0.27
    Base flow after adjustment 5.27 0.54 0.57 0.53
    Streamflow before adjust-
ment 11.47 0.44 0.66 0.52
    Streamflow after adjustment 10.99 0.59 0.69 0.68

Validation period (1996−1999)
    Base flow before adjustment 11.67 0.53 0.47 0.42
    Base flow after adjustment 13.63 0.78 0.42 −0.02
    Streamflow before adjust-
ment 11.20 0.61 0.69 0.63
    Streamflow after adjustment 13.24 0.76 0.68 0.67

Validation period (1997−1999)
    Base flow before adjustment 6.15 0.64 0.62 0.60
    Base flow after adjustment 5.92 0.82 0.66 0.62
    Streamflow before adjust-
ment 5.10 0.67 0.75 0.70
    Streamflow after adjustment 5.35 0.78 0.78 0.78

early spring. Results indicate that the model’s inability to
simulate the extreme storm events was inherited from the
weakness of the SCS curve number method for estimating
surface runoff. However, the adjustments made to account for
the subsurface flow recharge from outside the watershed im-
proved the model’s performance.

Table 5 shows the intercept, slope, and r2 values of linear
regression models and the Nash−Sutcliffe coefficient relating
SWAT’s simulations of base flow and streamflow to mea-
sured data for before and after flow adjustments. For most of
the conditions, the increased regression slopes, r2, and R2

values indicate that flow adjustments resulted in a better
agreement between measured data and model simulations,
except for the extreme hydrologic year (1996). The signifi-
cant improvement of the model’s performance by excluding
the abnormally wet year (1996) during the validation period

was revealed in the increased values of R2 (table 5), from
−0.02 to 0.62 for base flow, and from 0.67 to 0.78 for
streamflow, respectively. It may be concluded that SWAT
was unable to simulate extremely wet hydrologic conditions.
In addition, it should be noted that ignoring the subsurface
contribution of water from outside the watershed into the
watershed aquifer could cause significant errors in model
predictions, especially for small watersheds. Complete
discussion of the model performance can be found in Chu and
Shirmohammadi  (2004).

SEDIMENT

Figure 3 shows the time series plot of measured and
simulated monthly sediment loading during calibration. The
trend of simulation basically follows the measured data,
except for a large discrepancy in January 1995. The
underestimated sediment yield in January 1995 could
partially be attributed to the underestimated stream flow.
However, the measured sediment yield in January 1995 was
3996 kg/ha, almost four times larger than the second largest
monthly loading of April 1994 (fig. 3). In addition,
comparing the highest stream flow (338 mm) in January 1996
with a sediment yield of 408 kg/ha, the stream flow of 166
mm in January 1995 was believed to be unreasonable to
produce sediment yield of 3890 kg/ha. The average sediment
concentration in January 1995 is almost 19 times larger than
that in 1996. The abnormally high value could be attributed
to potential measurement errors or the unexpected applica-
tion of deicer by the county on the county road. Therefore,
this unusually high value in January 1995 was considered an
outlier due to the observation of deicer application on the
county road and was excluded from statistical analysis. The
reasoning for such exclusion was that this incident was not
part of normal watershed management.

Table 6 provides the statistical results comparing the
model simulations with measured data for the calibration and
validation periods. The average concentration in April 1994
(1696 mg/L) is almost 14 times larger than that in January
1996 (120 mg/L). However, the resulting abnormally high
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Figure 3. Time series plot of measured and simulated monthly sediment loading (kg/ha) during the calibration period (April, 1994−1995).
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Table 6. Statistical results comparing measured
and simulated sediment loading at station 2A.

Measurement
No. of

Samples r r2
R2 (Nash−
Sutcliffe)

RMS
(kg/ha)

Calibration period (April, 1994−1995)
    Monthly sediment 20 0.31 0.1 0.05 229.9

Validation period (1996−1997)
    Monthly sediment 24 0.43 0.19 0.11 402.1

Both periods (April, 1994−1997)
    Yearly sediment 4 0.96 0.91 0.90 659.0

loading (999 kg/ha, fig. 3) in April 1994 was considered to be
due to cows wandering across the stream, thus being a part of
the natural watershed. However, SWAT was unable to simu-
late such an occurrence. Therefore, the data point for April
1994 was not considered an outlier and was included in the

statistical analysis (table 6). During the calibration period,
the r, r2, and R2 values (0.31, 0.1, and 0.05, respectively) indi-
cate poor model performance in describing monthly sedi-
ment yield. The time series plot of the measured and
simulated monthly sediment loading during validation is
shown in figure 4. Overall, the monthly simulation results for
sediment yield during the validation period are relatively
poor, with low r and R2 values of 0.43 and 0.11 (table 6), re-
spectively. The poor predictions occur for the most part in
1996, an extremely wet year that also created problems for
stream flow predictions (Chu and Shirmohammadi, 2004).
The poor sediment yield might therefore be attributed to the
inability of the model to accurately predict flow during un-
usually wet hydrologic years. Similar poor predictions were
reported by Kirsch (2000) and Kirsch et al. (2002) in southern
Wisconsin.
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Figure 4. Time series plot of measured and simulated monthly sediment loading (kg/ha) during the validation period (1996−1997).
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Figure 6. Time series plot of monthly measured and simulated cumulative sediment (kg/ha) at station 2A.

Despite poor predictions of monthly sediment loading, the
predicted annual sediment yields agree very well with
measured data (fig. 5). The r, r2, and R2 values of 0.96, 0.91,
and 0.90 (table 6), respectively, display strong agreement
between yearly predictions and measurements. Further
validation was made to compare the time series plot of
cumulative monthly sediment loading. Figure 6 represents
the accumulation of simulated and measured monthly
sediment yield from May 1994 to 1997 (excluding two
extremes in 1994 and 1995). The cumulative simulated
sediment loading at the end of years 1995 and 1997 shows
only 2.2% and 0.3% relative error, respectively, compared to
measured sediment yield, which indicates very good model
performance for annual prediction. These results are similar
to those from the study conducted by Srinivasan et al. (1998).
It should be noted that SWAT, like most deterministic models,
is unable to simulate some unexpected occurrences, such as

animals stepping into the stream, which may cause rapid
elevation of sediment concentration.

NUTRIENTS
Figure 7 presents a time series plot of the model’s

prediction of monthly nitrate loadings compared with the
measured data after adjustment for the groundwater inflow
contributions during calibration (April 1994 through Decem-
ber 1995). The trend of simulation seems to match the
measured data reasonably well, except for large discrepan-
cies in the months of January and November 1995. This could
be partially attributed to the underestimated stream flow by
the model in both months. The statistical results of the
model’s performance in nitrate prediction during the calibra-
tion and validation periods are summarized in table 7. The
relatively low r, r2, and R2 values (0.52, 0.27, and 0.16,
respectively) indicate a poor simulation of monthly nitrate
loadings during the calibration period.
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Figure 7. Time series plot of measured and simulated monthly nitrate at station 2A during the calibration period (April, 1994−1995).
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Table 7. Statistical results comparing measured and simulated
NO3−N at station 2A after adjustment to the subsurface

flow contribution from outside the watershed.
Measurement

(adjusted)
No. of

Samples r r2
R2 (Nash−
Sutcliffe)

RMS
(kg/ha)

Calibration period (April, 1994−1995)
    Monthly NO3−N 21 0.52 0.27 0.16 1.27

Validation period (1996−1999)
    Monthly NO3−N 47 0.61 0.38 0.36 1.53

Both periods (1994−1999)
    Yearly NO3−N 6 0.98 0.96 0.90 2.22

Figure 8 shows the time series plot of monthly observed
and simulated nitrate loadings during validation (1996−
1999). The simulation displays acceptable correspondence
with the measured data, except for extreme flow events in
January 1996, January 1999, and October 1999. The

regression analysis performed by excluding the deviation of
January 1999 represented an improved model simulation,
considering the slope of 0.37, r2 of 0.38, and R2 of 0.36
(table 7) for validation as compared to the low r2 of 0.27 and
R2 of 0.16 for calibration. Despite poor performance in
predicting monthly nitrate loadings, the yearly comparison
showed a strong agreement (fig. 9). Statistical measures
summarized in table 7 confirm the graphical presentation by
the high r, r2, and R2 values (0.98, 0.96, and 0.9, respective-
ly), which indicate great success in prediction of annual
nitrate loadings.

The validation results of monthly ammonia loading are
presented in figure 10. The time series plot of simulated
monthly NH4−N loading seems to follow most of the trend of
measured data, except in January and February 1999
(fig. 10). The ammonia concentrations of these months were
much higher than the rest of months. Field investigation
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Figure 8. Time series plot of measured and simulated monthly nitrate at station 2A during the validation period (1996−1999).

0

5

10

15

20

25

30

35

1994 (Apr.−
Dec.)

1995 1996 1997 1998 1999

Time (years)

N
itr

at
e 

(k
g

/h
a)

measured after adjustment simulated

Figure 9. Time series plot of measured and simulated yearly nitrate loading at station 2A.



1534 TRANSACTIONS OF THE ASAE

0

2

4

6

8

10

12

14

A
pr

−
94

Ju
l−

94

O
ct

−
94

Ja
n−

95

A
pr

−
95

Ju
l−

95

O
ct

−
95

Ja
n−

96

A
pr

−
96

Ju
l−

96

O
ct

−
96

Ja
n−

97

A
pr

−
97

Ju
l−

97

O
ct

−
97

Ja
n−

98

A
pr

−
98

Ju
l−

98

O
ct

−
98

Ja
n−

99

A
pr

−
99

Ju
l−

99

O
ct

−
99

Time (years)

A
m

m
o

n
ia

 (k
g

/h
a)

measured after adjustment simulated

Figure 10. Time series plot of measured and simulated monthly NH4−N loading at station 2A.

Table 8. Statistical results comparing measured and simulated data
(NH4−N, TKN, and TP) at station 2A after adjustment to the

subsurface flow contribution from outside the watershed.
Measurement

(adjusted)
No. of

Samples r r2
R2 (Nash−
Sutcliffe)

RMS
(kg/ha)

Validation period (April, 1994−1999)
    Monthly NH4−N 67 0.62 0.38 −0.05 0.45
    Monthly TKN 67 0.63 0.40 0.15 1.94
    Monthly TP 67 0.62 0.38 0.08 0.59

Validation period (1994−1999)
    Yearly NH4−N 6 0.89 0.80 0.19 1.71
    Yearly TKN 6 0.81 0.66 −0.56 13.43
    Yearly TP 6 0.91 0.83 0.19 2.08

indicated that ammonium (oxidized to nitrate eventually)
based deicer application on the county road in winter may
have caused such abnormally high concentration in the
stream. These data from the unexpected occurrences were
treated as outliers. Statistical results for NH4−N validation

are listed in table 8. Although there is a linear relationship
(r = 0.62) between the simulated and measured monthly
NH4−N loadings, the R2 value of −0.05 indicates a poor per-
formance by the model. However, the simulation of annual
NH4−N loadings presents a much better agreement with mea-
sured data, as shown in figure 11 and table 8.

Figure 12 presents the time series plot of simulated and
measured monthly TKN loadings during the validation
period (1994−1999). Data indicate that the model underesti-
mated TKN loading for most of the time during the entire
validation period. Underestimation of TKN may be attrib-
uted to the model’s underprediction of organic nitrogen
because simulated TKN is the summation of simulated
ammonia and organic nitrogen. Statistical results of mea-
sured and simulated monthly TKN (excluding two extremes
in January 1995 and 1999) and yearly comparisons are shown
in table 8. Both monthly and yearly statistics indicate that the
model performed poorly in predicting organic nitrogen. It
should be noted that severe storms of 1995 and 1999 were not
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Figure 11. Time series plot of measured and simulated yearly NH4−N loading at station 2A.
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Figure 12. Time series plot of measured and simulated monthly TKN loading at station 2A.

properly simulated by the model due to inherent weakness in
the SCS curve number method used in the model. As a result,
the model underestimated flow, sediment, and nutrients.

The time series plot of measured and simulated soluble
phosphorus during the calibration period (April 1994 through
1996) is shown in figure 13. As with the flow and nitrate data,
January 1995 created some problem for soluble phosphorus
prediction. The statistics listed in table 9 do not show much
of strength for the model’s performance, considering a
negative R2 value of −0.08. Figure 14 indicates satisfactory
correspondence of simulated soluble phosphorus with mea-
sured data, except for a jump in November 1997 during the
validation period. The concentration of soluble phosphorus
in November 1997 was abnormally higher than in the rest of
months. This datum was excluded from the statistical
analysis as an outlier. After eliminating the November 1997
datum, the R2 value of 0.64 (table 9) confirms a reasonable
performance by the model. In addition, the yearly simulation
of soluble phosphorus displays a better agreement with the

measured data than monthly predictions (fig. 15). The
statistics in table 9 further indicate good performance by the
model in simulating annual loads.

The validation of total phosphorus was performed after
the calibration of soluble phosphorus was completed.
Figure 16 shows simulations of monthly total phosphorus
(soluble phosphorus plus organic phosphorus) loadings
compared with measured data for the validation period
(April 1994 through December 1999). The time series plot
indicates a poor simulation, mostly attributed to the poor
prediction of organic phosphorus. Statistical measures calcu-
lated by removing two extremes (January 1995 and Novem-
ber 1997) show only marginal model performance of
monthly TP, with an R2 value of 0.08 (table 8). However, the
simulation of yearly TP suggested a slightly better model
performance,  with r, r2, and R2 values of 0.91, 0.83, and 0.19,
respectively (table 8).

In conclusion, despite some better monthly nutrient
predictions reported by Saleh et al. (2000) and Santhi et al.
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Figure 13. Time series plot of measured and simulated monthly soluble phosphorus at station 2A during the calibration period (April, 1994−1996).
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Table 9. Statistical results comparing measured and simulated soluble
phosphorus at station 2A after adjustment to the subsurface

flow contribution from outside the watershed.
Measurement

(adjusted)
No. of

Samples r r2
R2 (Nash−
Sutcliffe)

RMS
(kg/ha)

Calibration period (April, 1994−1996)
    Monthly soluble P 32 0.62 0.39 −0.08 0.30

Validation period (1997−1999)
    Monthly soluble P 35 0.81 0.65 0.64 0.20

Both periods (1994−1999)
    Yearly soluble P 6 0.93 0.87 0.70 0.88

(2001), SWAT performed poorly in predicting monthly nutri-
ent loadings in the Piedmont physiographic region of Mary-
land. However, SWAT was capable of simulating annual
loadings of nutrients with good accuracy. The lack of detailed
information on fertilization (quantity and timing) may have
posed some difficulty in nutrient simulations. In addition, the
model’s inability to handle unexpected occurrences that may
have induced spikes in chemical loadings could have lead to
some of the erroneous predictions. For example, cows may
have stepped into the stream, excreted waste, and agitated
streambed sediment shortly before sampling at the down-
stream station. Ammonium (oxidized to nitrate eventually)
based deicers applied to the county road in winter may also

have contributed considerable nitrate loadings into the
stream that was not accounted for in SWAT simulations. For
the monthly NH4−N loading in January 1999, the big spike
may be due to the deicer application. The model performed
much better on an annual scale by neglecting those extreme
events, especially for nitrate and soluble phosphorus. How-
ever, the model seemed to perform only fairly in predicting
ammonia nitrogen and organic phosphorus on an annual ba-
sis. Organic nitrogen was underpredicted for most of the
study period, regardless of the simulation period.

SUMMARY AND CONCLUSION
A conceptual, continuous time, and watershed/large river

basin scale, distributed parameter model (SWAT) was
applied to a 346 ha watershed with mixed land use in the
Piedmont physiographic region of Maryland. Previous
studies (Chu et al., 2002; Shirmohammadi et al., 2001) have
pointed out that most existing watershed−scale models only
consider the subsurface media bounded by the surface
topography, thus missing the potential subsurface flow
contributions from outside the watershed. Results of water
budget analysis by Chu and Shirmohammadi (2004) sug-
gested a considerable groundwater contribution from outside
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Figure 14. Time series plot of measured and simulated monthly soluble phosphorus at station 2A during the validation period (1997−1999).
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Figure 16. Time series plot of measured and simulated monthly total phosphorus loading at station 2A.

the study watershed. Missing the subsurface flow contribu-
tions from outside the watershed may therefore lead to inac-
curate predictions of pollutant loading via respective
pathways. To evaluate the nutrient component of the SWAT
model, all nutrient loadings leaving the watershed were ad-
justed to subtract the chemical transport via subsurface flow
contribution from outside the watershed.

This study concluded that the SWAT model’s simulations
of monthly sediment loading were poor. However, its
performance in predicting annual sediment loading was
reasonably good, considering the potential errors within
sediment analysis and measurement. Similarly, SWAT per-
formed relatively poorly in predicting monthly nutrient
loadings but showed good results in predicting annual nitrate
and soluble phosphorus loadings. The model’s performance
in simulating annual ammonia and organic phosphorus
loadings was fair. Organic nitrogen was underpredicted for
most of the study period, regardless of the simulation period.

It should be noted again that the SWAT model is not
capable of handling unexpected occurrences that induce an
increase in sediment or nutrient loadings, and this degrades
the model’s performance. Overall, SWAT is a reasonable
annual predictor of the watershed responses for assessing the
impacts of different management systems on water supplies
and nonpoint source pollution. It should also be noted that
ignoring the subsurface contribution of water and chemicals
into the watershed aquifer, especially in small watersheds,
could cause significant errors in model prediction. Research-
ers should be aware of possible subsurface flow contributions
from outside of a surface watershed when applying hydrolog-
ic models in regions with abundant groundwater or potential
aquifer discharge, as may occur in the Piedmont.
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